Атмосферные выборосы и загрязнение воздуха в городе

Влияние атмосферных выбросов на экологическую ситуацию города.

Статьи по теме
Искать по теме

Экологическая опасность загрязнения атмосферного воздуха

Атмосферный воздух это природная смесь газов приземного слоя атмосферы за пределами жилых, производственных и иных помещений, сложившаяся в ходе эволюции Земли.

Атмосфера надежно оберегает человечество от многочисленных опасностей, угрожающих ему из космоса: не пропускает метеориты, защищает землю от перегрева, отмеряя солнечную энергию в необходимом количестве, нивелирует перепад суточных температур, который мог бы составить примерно 200 К, что неприемлемо для выживания всех земных существ. На верхнюю границу атмосферы ежесекундно обрушивается лавина космических излучений. Если бы они достигли земной поверхности, мгновенно исчезло бы все живущее на Земле.

Газовая оболочка спасает все живущее на Земле от губительных ультрафиолетовых, рентгеновских и космических лучей. Велико значение атмосферы и в распределении света. Воздух атмосферы разбивает солнечные лучи на миллион мелких лучей, рассеивает их и создает то равномерное освещение, к которому мы привыкли.

Загрязняющее вещество – примесь в атмосферном воздухе, оказывающая при определенных концентрациях неблагоприятное воздействие на здоровье человека, объекты растительного и животного мира и другие компоненты окружающей природной среды или наносящая ущерб материальным ценностям.

Загрязненная атмосфера вызывает увеличение числа заболеваний дыхательных путей. Состояние атмосферы сказывается на показателях заболеваемости даже в разных районах индустриальных городов. Например, в Москве предрасположенность к бронхиальной астме, бронхиту, конъюнктивиту, фарингиту, тонзиллиту, хроническим отитам на 40-60% выше в районах с повышенным уровнем загрязнения атмосферного воздуха.

В последние годы содержание в атмосферном воздухе российских городов и промышленных центров таких вредных примесей, как взвешенные вещества, диоксид серы.

Воздействие сернистого газа и его производных на человека и животных проявляется, прежде всего, в поражении верхних дыхательных путей, под влиянием сернистого газа и серной кислоты происходит разрушение хлорофилла в листьях растений, в связи с чем ухудшается фотосинтез и дыхание, замедляется рост, снижается качество древесных насаждений и урожайность сельскохозяйственных культур, а при более высоких и продолжительных дозах воздействия растительность погибает.

Проблема загрязнения атмосферного воздуха – одна из серьезнейших глобальных проблем, с которыми столкнулось человечество. Опасность загрязнения атмосферы – не только в том, что в чистый воздух попадают вредные вещества, губительные для живых организмов, но и в вызываемом загрязнениями изменении климата Земли.

Загрязнение воздуха (атмосферы) в результате деятельности человека привело к тому, что за последние 200 лет концентрация двуокиси углерода выросла почти на 30%. Тем не менее, человечество продолжает активно сжигать ископаемое топливо и уничтожать леса.

Процесс настолько масштабен, что приводит к глобальным экологическим проблемам. Загрязнение воздуха происходит и в результате других видов человеческой деятельности. Сжигание топлива на тепловых электростанциях сопровождается выбросом двуокиси серы.

С выхлопными газами автомобилей в атмосферу поступают оксиды азота. При неполном сгорании топлива образуется угарный газ. Кроме того, не следует забывать и о мелкодисперсных твердых загрязнителях, таких как копоть и пыль.

Химическое загрязнение атмосферы

Основные загрязняющие вещества

В основном существуют три основных источника загрязнения атмосферы: промышленность, бытовые котельные, транспорт. Доля каждого из этих источников в общем загрязнении воздуха сильно различается в зависимости от места. На данный момент наиболее сильно загрязняет воздух промышленное производство.

Источники загрязнений – теплоэлектростанции, которые вместе с дымом выбрасывают в воздух сернистый и углекислый газ;

металлургические предприятия, особенно цветной металлургии, которые выбрасывают в воздухоксилы азота, сероводород, хлор, фтор, аммиак, соединения фосфора, частицы и соединения ртути и мышьяка; химические и цементные заводы.

Вредные газы попадают в воздух в результате сжигания топлива для нужд промышленности, отопления жилищ, работы транспорта, сжигания и переработки бытовых и промышленных отходов.

Атмосферные загрязнители разделяют на первичные, поступающие непосредственно в атмосферу, и вторичные, являющиеся результатом превращения последних. Так, поступающий в атмосферу сернистый газ окисляется до серного ангидрида, который взаимодействует с парами воды и образует капельки серной кислоты. При взаимодействии серного ангидрида с аммиаком образуются кристаллы сульфата аммония. Подобным образом, в результате химических, фотохимических, физико-химических реакций между загрязняющими веществами и компонентами атмосферы, образуются другие вторичные признаки. Основным источником пирогенного загрязнения на планете являются тепловые электростанции, металлургические и химические предприятия, котельные установки, потребляющие более 170% ежегодно добываемого твердого и жидкого топлива.

Основными вредными примесями пирогенного происхождения являются следующие:

а) Оксид углерода. Получается при неполном сгорании углеродистых веществ. В воздух он попадает в результате сжигания твердых отходов, с выхлопными газами и выбросами промышленных предприятий. Ежегодно этого газа поступает в атмосферу не менее 1250 млн. т. Оксид углерода является соединением, активно реагирующим с составными частями атмосферы и способствует повышению температуры на планете, и созданию парникового эффекта.

б) Сернистый ангидрид. Выделяется в процессе сгорания серу содержащего топлива или переработки сернистых руд (до 170 млн. т. в год) общемирового выброса.

в) Серный ангидрид. Образуется при окислении сернистого ангидрида. Конечным продуктом реакции является аэрозоль или раствор серной кислоты в дождевой воде, который подкисляет почву, обостряет заболевания дыхательных путей человека. Выпадение аэрозоля серной кислоты из дымовых факелов химических предприятий отмечается при низкой облачности и высокой влажности воздуха. Листовые пластинки растений, произрастающих на расстоянии менее 11 км. от таких предприятий, обычно бывают густо усеяны мелкими некротическими пятнами, образовавшихся в местах оседания капель серной кислоты.

Пирометаллургические предприятия цветной и черной металлургии, а также ТЭС ежегодно выбрасывают в атмосферу десятки миллионов тонн серного ангидрида.

г) Сероводород и сероуглерод. Поступают в атмосферу раздельно или вместе в другими соединениями серы. Основными источниками выброса являются предприятия по изготовлению искусственного волокна, сахара, коксохимические, нефтеперерабатывающие, а также нефтепромыслы.

В атмосфере при взаимодействии с другими загрязнителями подвергаются медленному окислению до серного ангидрида.

д) Оксилы азота. Основными источниками выброса являются предприятия, производящие азотные удобрения, азотную кислоту и нитраты, анилиновые красители, нитросоединения, вискозный шелк, целлулоид. Количество оксилов азота, поступающих в атмосферу, составляет 20 млн. т. в год.

е) Соединения фтора. Источниками загрязнения являются предприятия по производству алюминия, эмалей, стекла, керамики, стали, фосфорных удобрений. Фторосодержащие вещества поступают в атмосферу в виде газообразных соединений – фтороводорода или пыли фторида натрия и кальция. Соединения характеризуются токсическим эффектом. Производные фтора являются сильными инсектицидами.

ж) Соединения хлора. Поступают в атмосферу от химических предприятий, производящих соляную кислоту, хлоросодержащие пестициды, органические красители, гидролизный спирт, хлорную известь, соду. В атмосфере встречаются как примесь молекулы хлора и паров соляной кислоты. Токсичность хлора определяется видом соединений и их концентрацией. В металлургической промышленности при выплавке чугуна и при переработке его на сталь происходит выброс в атмосферу различных тяжелых метал лов и ядовитых газов. Так, в расчете на 11 т. передельного чугуна выделяется кроме 12,7 кг. сернистого газа и 14,5 кг. пылевых частиц, определяющих количество соединений мышьяка, фос фора, сурьмы, свинца, паров ртути и редких металлов, смоляных веществ и цианистого водорода.

Аэрозольное загрязнение атмосферы

Аэрозоли – это твердые или жидкие частицы, находящиеся во взвешенном состоянии в воздухе. Твердые компоненты аэрозолей в ряде случаев особенно опасны для организмов, а у людей вызывают специфические заболевания. В атмосфере аэрозольные загрязнения воспринимаются в виде дыма, тумана, мглы или дымки. Значительная часть аэрозолей образуется в атмосфере при взаимодействии твердых и жидких частиц между собой или с водяным паром. Средний размер аэрозольных частиц составляет 11-5 1 мкм. В атмосферу Земли ежегодно поступает около 11 куб. км. пылевидныхчастиц искусственного происхождения. Большое количество пылевых частиц образуется также в ходе производственной деятельности людей.

Чаще всего в их составе обнаруживаются соединения кремния, кальция и углерода, реже – оксиды металлов: железа, магния, марганца, цинка, меди, никеля, свинца, сурьмы, висмута, селена, мышьяка, бериллия, кадмия, хрома, кобальта, молибдена, а также асбест. Еще большее разнообразие свойственно органической пыли, включающей алифатические и ароматические углеводороды, соли кислот. Она образуется при сжигании остаточных нефтепродуктов, в процессе пиролиза на нефтеперерабатывающих, нефтехимических и других подобных предприятиях. Постоянными источниками аэрозольного загрязнения являются промышленные отвалы – искусственные насыпи из переотложенного материала, преимущественно вскрышных пород, образуемых при добыче полезных ископаемых или же из отходов предприятий перерабатывающей промышленности, ТЭС. Источником пыли и ядовитых газов служат массовые взрывные работы. Так, в результате одного среднего по массе взрыва (1250-300 тонн взрывчатых веществ) в атмосферу выбрасывается около 12 тыс. куб. м. условного оксида углерода и более 1150 т. 0пыли. Производство цемента и других строительных материалов также является источником загрязнения атмосферы пылью. Основные технологические процессы этих производств – измельчение и химическая обработка шихт, полуфабрикатов и получаемых продуктов в потоках горячих газов всегда сопровождается выбросами пыли и других вредных веществ в атмосферу. К атмосферным загрязнителям относятся углеводороды – насыщенные и ненасыщенные, включающие от 11 до 13 0атомов углерода. Они подвергаются различным превращениям, окислению, полимеризации, взаимодействуя с другими атмосферными загрязнителями после возбуждения солнечной радиацией. В результате этих реакций образуются перекисные соединения, свободные радикалы, соединения углеводородов с оксидами азота и серы часто в виде аэрозольных частиц. При некоторых погодных условиях могут образовываться особо большие скопления вредных газообразных и аэрозольных примесей в приземном слое воздуха.

Обычно это происходит в тех случаях, когда в слое воздуха не посредственно над источниками газопылевой эмиссии существует инверсия расположения слоя более холодного воздуха под теплым, что препятствует воздушных масс и задерживает перенос примесей вверх. В результате вредные выбросы сосредотачиваются под слоем инверсии, содержание их у земли резко возрастает, что становится одной из причин образования ранее неизвестного в природе фотохимического тумана.

Фотохимический туман (смог) Фотохимический туман представляет собой многокомпонентную смесь газов и аэрозольных частиц первичного и вторичного происхождения. В состав основных компонентов смога входят озон, оксиды азота и серы, многочисленные органические соединения перекисной природы, называемые в совокупности фотооксидантами. Фотохимический смог возникает в результате фотохимических реакций при определенных условиях: наличии в атмосфере высокой концентрации оксидов азота, углеводородов и других загрязнителей, интенсивной солнечной радиации и безветрия или очень слабого обмена воздуха в приземном слое при мощной и в течение не менее суток повышенной инверсии. Устойчивая безветренная погода, обычно сопровождающаяся инверсиями, необходима для создания высокой концентрации реагирующих веществ.

Такие условия создаются чаще в июне-сентябре и реже зимой.

При продолжительной ясной погоде солнечная радиация вызывает расщепление молекул диоксида азота с образованием оксида азота и атомарного кислорода. Атомарный кислород с молекулярным кислородом дают озон. Казалось бы, последний, окисляя оксид азота, должен снова превращаться в молекулярный кислород, а оксид азота в диоксид. Но этого не происходит. Оксид азота вступает в реакции с олефинами выхлопных газов, которые при этом расщепляются по двойной связи и образуют осколки молекул и избыток озона. В результате продолжающейся диссоциации новые массы диоксида азота расщепляются и дают дополнительные количества озона. Возникает циклическая реакция, в итоге которой в атмосфере постепенно накапливается озон. Этот процесс в ночное время прекращается. В свою очередь озон вступает в ре акцию с олефинами. В атмосфере концентрируются различные перекиси, которые в сумме и образуют характерные для фотохимического тумана оксиданты. Последние являются источником так называемых свободных радикалов, отличающихся особой реакционной способностью. Такие смоги – нередкое явление над Лондоном, Парижем, Лос-Анджелесом, Нью-Йорком и другими городами Европы и Америки. По своему физиологическому воздействию на организм человека они крайне опасны для дыхательной и кровеносной системы и часто бывают причиной преждевременной смерти городских жителей с ослабленным здоровьем.

Проблема контролирования выброса в атмосферу загрязняющих веществ, промышленными предприятиями (ПДК)

ПДК – такие концентрации, которые на человека и его потомство прямого или косвенного воздействия, не ухудшают их работоспособности, самочувствия, а также санитарно-бытовых условий жизни людей.

Обобщение всей информации по ПДК, получаемой всеми ведомствами, осуществляется в ГГО – Главной Геофизической Обсерватории. Чтобы по результатам наблюдений определить значения воз- духа, измеренные значения концентраций сравнивают с максимальной разовой предельно допустимой концентрацией и определяют число случаев, когда были превышены ПДК, а также во сколько раз наибольшее значение было выше ПДК. Среднее значение концентрации за месяц или за год сравнивается с ПДК длительного действия – среднеустойчивой ПДК. Состояние загрязнение воздуха несколькими веществами, наблюдаемые в атмосфере города, оценивается с помощью комплексного показателя – индекса загрязнения атмосферы (ИЗА). Для этого нормированные на соответствующее значения ПДК и средние концентрации различных веществ с помощью несложных расчетов приводят к величине концентраций сернистого ангидрида, а затем суммируют. Максимальные разовые концентрации основных загрязняющих веществ были наибольшими в Норильске (оксиды азота и серы), Фрунзе (пыль), Омске (угарный газ). Степень загрязнения воздуха основными загрязняющими веществами находится в прямой зависимости от промышленного развития города. Наибольшие максимальные концентрации характерны для городов с численностью населения 1 более 500 тыс. жителей. Загрязнение воздуха специфическими веществами зависит от вида промышленности, развитой в городе. Если в крупном городе размещены предприятия нескольких отраслей промышленности, то создается очень высокий уровень загрязнения воздуха, однако проблема снижения выбросов многих специфических веществ до сих пор остается нерешенной.

Загрязнение атмосферы подвижных источников выбросов

В последние десятилетия в связи с быстрым развитием автотранспорта и авиации существенно увеличилась доля выбросов, поступающих в атмосферу от подвижных источников: грузовых и легковых автомобилей, тракторов, тепловозов и самолетов. Согласно оценкам, в городах на долю автотранспорта приходится (в зависимости т развития в данном городе промышленности и числа автомобилей) от 30 до 70 % общей массы выбросов.

Автотранспорт

Основной вклад в загрязнение атмосферы вносят автомобили, работающие на бензине, затем самолеты (примерно 5 %), автомобили с дизельными двигателями (около 4 %), тракторы и другие сельскохозяйственные машины (около 4 %), железнодорожный и водный транспорт (примерно 2 %). К основным загрязняющим атмосферу веществам, которые выбрасывают подвижные источники (общее число таких веществ превышает 40), относятся оксид углерода, углеводороды (примерно 19 %) и оксиды азота (около 9 %). Оксид углерода (CO) и оксиды азота (N0x) поступают в атмосферу только с выхлопными газами, тогда как не полностью сгоревшие углеводороды (HnСm) поступают как вместе с выхлопными газами (что составляет примерно 60 % от общей массы выбрасываемых углеводородов), так и из картера (около 20 %), топливного бака (около 10 %) и карбюратора (примерно 10 %); твердые примеси поступают в основном с выхлопными газами (90 %) и из картера (10 %).

Наибольшее количество загрязняющих веществ выбрасывается при разгоне автомобиля, особенно при быстром, а также при движении с малой скоростью (из диапазона наиболее экономичных). Относительная доля (от общей массы выбросов) углеводородов и оксида углерода наиболее высока при торможении и на холостом ходу, доля оксидов азота – при разгоне. Из этих данных следует, что автомобили особенно сильно загрязняют воздушную среду при частых остановках и при движении с малой скоростью.

Создаваемые в городах системы движения в режиме "зеленой волны", существенно сокращающие число остановок транспорта на перекрестках, призваны сократить загрязнение атмосферного воздуха в городах. Большое влияние на качество и количество выбросов примесей оказывает режим работы двигателя, в частности соотношение между массами топлива и воздуха, момент зажигания, качество топлива, отношение поверхности камеры сгорания к ее объему и др. При увеличении отношения массы воздуха и топлива, поступающих в камеру сгорания, сокращаются выбросы оксида углерода и углеводородов, но возрастает выброс оксидов азота

Несмотря на то что дизельные двигатели более экономичны, таких веществ, как СО, HnCm, NОx, выбрасывают не более, чем бензиновые, они существенно больше выбрасывают дыма (преимущественно несгоревшего углерода), который к тому же обладает неприятным запахом создаваемым некоторыми несгоревшими углеводородами). В сочетании же с создаваемым шумом дизельные двигатели не только сильнее загрязняют среду, но и воздействуют на здоровье человека гораздо в большей степени, чем бензиновые

Самолеты

Хотя суммарный выброс загрязняющих веществ двигателями самолетов сравнительно невелик (для города, страны), в районе аэропорта эти выбросы вносят определяющий вклад в загрязнение среды. К тому же турбореактивные двигатели (так же как дизельные) при посадке и взлете выбрасывают хорошо заметный на глаз шлейф дыма. Значительное количество примесей в аэропорту выбрасывают и наземные передвижные средства, подъезжающие и отъезжающие автомобили.

Согласно полученным оценкам, в среднем около 42 % общего расхода топлива тратится на выруливание самолета к взлетно-посадочной полосе (ВПП) перед взлетом и на заруливание с ВПП после посадки (по времени в среднем около 22 мин).

При этом доля несгоревшего и выброшенного в атмосферу топлива при рулении намного больше, чем в полете. Помимо улучшения работы двигателей (распыление топлива, обогащение смеси в зоне горения, использование присадок к топливу, впрыск воды и др.), существенного уменьшения выбросов можно добиться путем сокращения времени работы двигателей на земле и числа работающих двигателей при рулении (только за счет последнего достигается снижение выбросов в 3 – 8 раз).

В последние 10 – 15 лет большое внимание уделяется исследованию тех эффектов, которые могут возникнуть в связи с полетами сверхзвуковых самолетов и космических кораблей. Эти полеты сопровождаются загрязнением стратосферы оксидами азота и серной кислотой (сверхзвуковые самолеты), а также частицами оксида алюминия (транспортные космические корабли). Поскольку эти загрязняющие вещества разрушают озон, то первоначально создалось мнение (подкрепленное соответствующими модельными расчетами), что планируемый рост числа полетов сверхзвуковых самолетов и транспортных космических кораблей приведет к существенному уменьшению содержания озона со всеми последующими губительными воздействиями ультрафиолетовой радиации на биосферу Земли. Однако более глубокий подход к этой проблеме позволил сделать заключение о слабом влиянии выбросы сверхзвуковых самолетов на состояние стратосферы. Так, при современном числе сверхзвуковых самолетов и выбросе загрязняющих веществ на высоте около 16 км относительное уменьшение содержания О3 может составить примерно 0.60; если их число возрастет до 200 и высота полета будет близка к 20 км, то относительное уменьшение содержания О3 может подняться до 17%.

Глобальная приземная температура воздуха за счет парникового эффекта, создаваемого выбросами сверхзвуковыми самолетами может повысится не более чем на 0,1°C/ Более сильное воздействие на озонный слой и глобальную температуру воздуха могут оказать хлорфторметаны (ХФМ0 фреон-11 и фреон-12 – газы, образующиеся в частности, при испарении аэрозольных препаратов, которые используются (преимущественно женщинами) для крашения волос. Поскольку ХФМ очень инертны, то они распространяются и долго живут не только в тропосфере, но и в стратосфере. Обладая довольно сильными полосами поглощения в окне прозрачности атмосферы (8-12 мкм), фреоны усиливают парниковый эффект. Наметившееся в последние десятилетия темпы роста производства фреонов могут привести к увеличению содержания фреона-11 и фреона-12 в 2030 г. до 0,8 и 2,3 млрд. (при современных значениях 0,1 и 0,2 млрд.). Под влиянием такого количества фреонов общее содержание озона в атмосфере уменьшится на 18%, а в нижней стратосфере даже на 40; глобальная приземная температура возрастет на 0,12-0,21°С.

В заключение можно отметить, что все эти антропогенные эффекты перекрываются в глобальном масштабе естественными факторами, например, загрязнением атмосферы вулканическими извержениями.

Влияние загрязнения атмосферы на человека, растительный и животный мир

Все загрязняющие атмосферный воздух вещества в большей или меньшей степени оказывают отрицательное влияние на здоровье человека. Эти вещества попадают в организм человека преимущественно через систему дыхания. Органы дыхания страдают от загрязнения непосредственно, поскольку около 50% частиц примеси радиусом 0,01-0.1 мкм, проникающих в легкие, осаждаются в них.

Проникающие в организм частицы вызывают токсический эффект, поскольку они: а токсичны (ядовиты) по своей химической или физической природе; б) служат помехой для одного или нескольких механизмов, с помощью которых нормально очищается респираторный (дыхательный) тракт; в) служат носителем поглощенного организмом ядовитого вещества.

В некоторых случаях воздействие одни из загрязняющих веществ в комбинации с другими приводят к более серьезным расстройствам здоровья, чем воздействие каждого из них в отдельности. Большую роль играет продолжительность воздействия.

Статистический анализ позволил достаточно надежно установить зависимость между уровнем загрязнения воздуха и такими заболеваниями, как поражение верхних дыхательных путей, сердечная недостаточность, бронхиты, астма, пневмония, эмфизема легких, а также болезни глаз. Резкое повышение концентрации примесей, сохраняющееся в течение нескольких дней, увеличивает смертность людей пожилого возраста от респираторных и сердечно-сосудистых заболеваний. В декабре 1930 г. в долине реки Маас (Бельгия) отмечалось сильное загрязнение воздуха в течение 3 дней; в результате сотни людей заболели, а 60 человек скончались – это более чем в 10 раз выше средней смертности. В январе 1931 г. в районе Манчестера (Великобритания) в течение 9 дней наблюдалось сильное задымление воздуха, которое явилось причиной смерти 592 человек. Широкую известность получили случаи сильного загрязнения атмосферы Лондона, сопровождавшиеся многочисленными смертельными исходами. В 1873 г. в Лондоне было отмечено 268 непредвиденных смертей. Сильное задымление в сочетании с туманом в период с 5 по 8 декабря 1852 г. привело к гибели более 4000 жителей Большого Лондона. В январе 1956 г. около 1000 лондонцев погибли в результате продолжительного задымления. Большая часть тех, кто умер неожиданно, страдали от бронхита, эмфиземы легких или сердечно-сосудистыми заболеваниями.

Оксид углерода

Концентрация СО, превышающая предельно допустимую, приводит к физиологическим изменениям в организме человека, а концентрация более 750 млн к смерти. Объясняется это тем, что СО исключительно агрессивный газ,, легко соединяющийся с гемоглобином (красными кровяными тельцами). При соединении образуется карбоксигемоглобин, повышение (сверх нормы, равной 0.4%) содержание которого в крови сопровождается: а) ухудшением остроты зрения и способности оценивать длительность интервалов времени, б) нарушением некоторых психомоторных функций головного мозга (при содержании 2-5%), в) изменениями деятельности сердца и легких (при содержании более 5%), г) головными болями, сонливостью, спазмами, нарушениями дыхания и смертностью (при содержании 10-80%).

Степень воздействия оксида углерода на организм зависят не только от его концентрации, но и от времени пребывания (экспозиции) человека в загазованном СО воздухе. Так, при концентрации СО равной 10-50 млн. (нередко наблюдаемой в атмосфере площадей и улиц больших городов), при экспозиции 50-60 мин отмечаютcя нарушения, приведенные в п. "а", 8-12 ч – 6 недель – наблюдаются изменения, указанные в п.. "в". Нарушение дыхания, спазмы. Потеря сознания наблюдаются при концентрации СО, равной 200 млн., и экспозиции 1-2 ч при тяжелой работе и 3-6 ч – в покое. К счастью, образование карбоксигемоглобина в крови – процесс обратимый: после прекращения вдыхания СО начинается его постепенный вывод из крови; у здорового человека содержание СО в крови каждые 3-4 ч и уменьшается в два раза. Оксид углерода – очень стабильное вещество, время его жизни в атмосфере составляет 2-4 мес. При ежегодном поступлении 350 млн. т концентрация СО в атмосфере должна была бы увеличиваться примерно на 0,03 млн. – 1/год. Однако этого, к счастью, не наблюдается, чем мы обязаны в основном почвенным грибам, очень активно разлагающим СО (некоторую роль играет также переход СО в СО2).

Диоксид серы и серный ангидрид

Диоксид серы (SO2) и серный ангидрид (SO3) в комбинации со взвешенными частицами и влагой оказывают наиболее вредной воздействие на человека, живые организмы и материальные ценности SO2 – бесцветный и негорючий газ, запах которого начинает ощущаться при его концентрации в воздухе 0,3-1,0 млн., а при концентрации свыше 3 млн. SO2 имеет острый раздражающий запах.

Диоксид серы в смеси с твердыми частицами и серной кислотой (раздражитель более сильный, чем SO2) уже при среднегодовом содержании 9,04-0,09 млн. и концентрации дыма 150-200 мкг/м3 приводит к увеличению симптомов затрудненного дыхания и болезней легких, а при среднесуточном содержании SO2 0,2-0,5 млн. и концентрации дыма 500-750 мкг/м3 наблюдается резкое увеличение числа больных и смертельных исходов. При концентрации SO2 0,3-0,5 млн. в течение нескольких дней наступает хроническое поражение листьев растений (особенно шпината, салата, хлопка и люцерны), а также иголок сосны.

Оксиды азота и некоторые другие вещества

Оксиды азота (прежде всего, ядовиты диоксид азота NO2), соединяющиеся при участии ультрафиолетовой солнечной радиации с углеводородами (среди наибольшей реакционной способностью обладают олеофины), образуют пероксилацетилнитрат (ПАН) и другие фотохимические окислители, в том числе пероксибензоилнитрат (ПБН), озон (О3), перекись водорода (Н 2О2), диоксид азота.

Эти окислители основные составляющие фотохимического смога, повторяемость которого велика в сильно загрязненных городах, расположенных в низких широтах северного и южного полушария (Лос-Анджелес, в котором около 200 дней в году отмечается смог, Чикаго, Нью-Йорк и другие города США; ряд городов Японии, Турции, Франции, Испании, Италии, Африки и Южной Америки).

Оценка скорости фотохимических реакций, приводящих к образованию ПАН, ПБН и озона, показывает, что в ряде южных городов бывшего Советского Союза летом в околополуденные часы (когда велик приток ультрафиолетовой радиации) эти скорости превосходят значения, начиная с которых отмечается образование смога. Так, в Алма-Ате, Ереване, Тбилиси, Ашхабаде, Баку, Одессе и других городах при наблюдаемых уровнях загрязнения воздуха максимальная скорость образования О3 достигла 0,70-0,86 мг/(м3 ×ч), в то время как смог возникает уже при скорости 0,35 мг/(м3 × ч).

Наличие в составе ПАН диоксида азота и иодистого калия придает смогу коричневый оттенок. При концентрации ПАН выпадает на землю в виде клейкой жидкости губительно действующей на растительный покров.

Все окислители, в первую очередь ПАН и ПБН, сильно раздражают и взывают воспаление глаз, а в комбинации с озоном раздражают носоглотку, приводят к спазмам грудной клетки, а при высокой концентрации (свыше 3-4 мг/м3) вызывают сильный кашель и ослабляют возможность на чем либо сосредоточиться.

Назовем некоторые другие загрязняющие воздух вещества, вредно действующие на человека. Установлено, что у людей, профессионально имеющих дело с асбестом повышена вероятность раковых заболеваний бронхов и диафрагм, разделяющих грудную клетку и брюшную полость. Берилий оказывает вредное воздействие(вплоть до возникновения онкологических заболеваний) на дыхательные пути, а также на кожу и глаза. Пары ртути вызывают нарушение работы центральной верхней системы и почек. Поскольку ртуть может накапливаться в организме человека, то в конечном итоге ее воздействие приводит к расстройству умственных способностей.

В городах вследствие постоянно увеличивающегося загрязнения воздуха неуклонно растет число больных, страдающих такими заболеваниями, как хронический бронхит, эмфизема легких, различные аллергические заболевания и рак легких.

В Великобритании 10% случаев смертельных исходов приходится на хронический бронхит, при этом 21; населения в возрасте 40-59 лет страдает этим заболеванием.

В Японии в ряде городов до 60% жителей болеют хроническим бронхитом, симптомами которого является сухой кашель с частыми отхаркиваниями, последующее прогрессирующее затруднение дыхания и сердечная недостаточность (в связи с этим следует отметить, что так называемое японское экономическое чудо 50-х – 60-х годов сопровождалось сильным загрязнением природной среды одного из наиболее красивых районов земного шара и серьезным ущербом, причиненным здоровью населения этой страны).

В последние десятилетия с вызывающей сильную озабоченность быстротой растет число заболевших раком бронхов и легких, возникновению которых способствуют канцерогенные углеводороды.

Перечень загрязняющих веществ, выбрасываемых в атмосферу

Определение перечня загрязняющих веществ, поступающих в атмосферный воздух от источников хозяйствующего субъекта, подлежащих государственному учету и нормированию, осуществляется в соответствии с Приказом Минприроды РФ № 579 от 30.12.2010 г.

К "Порядку установления источников выбросов вредных (загрязняющих) веществ в атмосферный воздух, подлежащих государственному учету и нормированию" Приказа Минприроды РФ № 579 от 30.12.2010 г., а также не включенные в Перечень загрязняющих веществ вредные (загрязняющие) вещества, соответствующие одному из критериев (п. 9 "Порядка…"):

- показатель опасности выбросов к "Порядку…", больше или равен 0,1;

- приземные концентрации выбросов превышают 5% от гигиенического (экологического) норматива качества атмосферного воздуха (больше 0,05 ПДК).

Определение указанных приземных концентраций осуществляется по результатам упрощенных расчетов загрязнения в приземном слое атмосферного воздуха, выполненных с учетом особенностей местоположения источников загрязнения атмосферы по отношению к жилой территории и другим зонам с повышенными требованиями к охране атмосферного воздуха.

Показатель опасности выбросов Смj рассчитывается для каждого (j-го) выбрасываемого вещества по формуле:

Влияние атмосферных выбросов на экологическую ситуацию города

где:

A – коэффициент, зависящий от температурной стратификации атмосферы (250 – для Республики Бурятия).

n- безразмерный коэффициент, учитывающий влияние рельефа местности, устанавливается на основе анализа картографического материала, освещающего рельеф местности в радиусе до 50 высот наиболее высокого из размещаемых на промышленной площадке источника, но не менее чем до 2 км.

F – безразмерный коэффициент, учитывающий скорость оседания вредных веществ в атмосферном воздухе;

ПДКj – наименьшее из значений ПДКмрj и ПДКэj,

ПДКмрj (мг/м3) – предельно допустимая концентрация максимальная разовая j-го вещества в атмосферном воздухе населенных мест;

ПДКэj (мг/м3) – экологический норматив качества атмосферного воздуха;

в случае, если для какого-либо вещества ПДКмрj не установлена, используется ОБУВj этого вещества;

в случае отсутствия ПДКмрj и ОБУВj используется величина 10 * ПДКссj – среднесуточная ПДК j-го вещества;

i – порядковый номер источника выброса загрязняющего вещества в атмосферу;

N – количество источников выбросов данного загрязняющего вещества;

М (г/с) – значение выброса j-го вредного (загрязняющего) вещества от i-го источника предприятия, определенное на основе результатов инвентаризации выбросов вредных (загрязняющих) веществ в атмосферный воздух;

Н (м) – значение высоты i-го источника предприятия, из которого выбрасывается данное вещество.

Для определения параметра Смj по веществам, выброс которых в атмосферу уменьшается за счет газоочистных и пылеулавливающих установок (ГОУ) или других средств обезвреживания, необходимо использовать величину максимального разового выброса до применения ГОУ.

Результаты определения перечня загрязняющих веществ, подлежащих государственному учету и нормированию, представлены в таблице 4

Таблица 4 Результаты оценки критериев перечня загрязняющих веществ, подлежащих государственному учету и нормированию.

Код ЗВ

Наименование ЗВ

Содержание ЗВ в Приложении 2 "Порядка…"

Параметр  Смj

Концентрация ЗВ на границе жилой застройки, доли ПДК

0123

диЖелезо триоксид (Железа оксид)

-

856,26

**

0143

Марганец и его соединения

-

2,78

**

0168

Олово оксид

-

0,31

**

0184

Свинец и его соединения

+

*

**

0301

Азота диоксид (Азот (IV) оксид)

+

*

**

0304

Азот (II) оксид (Азота оксид)

-

4,38

**

0322

Серная кислота

-

0,01

<0,05

0328

Углерод (Сажа)

+

*

**

0330

Сера диоксид (Ангидрид сернистый)

+

*

**

0333

Сероводород (Дигидросульфид)

+

*

**

0337

Углерод оксид

+

*

**

0342

Фтористые газообразные соединения

+

*

**

0344

Фториды плохо растворимые

+

*

**

0703

Бенз/а/пирен (3,4 – бензпирен)

+

*

**

0621

Метилбензол (Толуол)

+

*

**

1023

Диэтиленгликоль

+

*

**

1042

Бутан-1-ол (Спирт н-бутиловый)

+

*

**

1061

Этанол

+

*

**

1119

2-Этоксиэтанол (Этилцеллозольв)

+

*

**

1210

Бутилацетат

+

*

**

1325

Формальдегид

+

*

**

1401

Пропан-2-он

+

*

**

2704

Бензин (нефтяной, малосернистый)

+

*

**

2732

Керосин

+

*

**

2754

Углеводороды предельные С12-С19

+

*

**

2902

Взвешенные вещества

-

834,96

**

2908

Пыль неорганическая, содержащая 70-20% двуокиси кремния

-

0,14

**

2930

Пыль абразивная

-

816,32

**

2978

Пыль резинового вулканизатора

-

361,04

**

Примечание:

* – расчет параметра Смj для данного вещества нецелесообразен, поскольку вещество представлено в приложении №2 "Порядка…"

** – расчет концентрации ЗВ на границе жилой застройки нецелесообразен, т.к. параметр Смj > 0,1 либо вещество представлено в приложении №2 "Порядка…"

Таким образом, нормированию подлежат следующие загрязняющие вещества (таблица 5):

Таблица 5 Перечень загрязняющих веществ, выбрасываемых в атмосферу, подлежащих нормированию

Вещество

Использ. критерий

Значение критерия, мг/м3

Класс опасности

Суммарный выброс

Код

Наименование

г/с

т/год

0123

диЖелезо триоксид (Железа оксид)

ПДК с/с

0,04

4

0,050505

0,010508

0143

Марганец и его соединения

ПДК м/р

0,01

2

0,000043

0,000038

0168

Олово оксид

ПДК с/с

0,02

3

0,000002

0,000001

0184

Свинец

ПДК м/р

0,001

1

0,000003

0,000002

0301

Азота диоксид (Азот (IV) оксид)

ПДК м/р

0,2

3

0,239965

0,119318

0304

Азот (II) оксид (Азота оксид)

ПДК м/р

0,4

3

0,038994

0,019389

0328

Углерод (Сажа)

ПДК м/р

0,15

3

0,012329

0,005347

0330

Сера диоксид (Ангидрид сернистый)

ПДК м/р

0,5

3

0,081363

0,029354

0333

Сероводород (Дигидросульфид)

ПДК м/р

0,008

2

0,000008

0,0000005

0337

Углерод оксид

ПДК м/р

5,0

4

1,560406

3,440162

0342

Фтористые газообразные соединения

ПДК м/р

0,02

2

0,000089

0,000078

0344

Фториды плохо растворимые

ПДК м/р

0,2

2

0,000156

0,000138

0621

Метилбензол (Толуол)

ПДК м/р

0,6

3

0,224176

1,267104

0703

Бенз/а/пирен

ПДК с/с

0,000001

1

0,00000019

0,00000003

1023

Диэтиленгликоль

ПДК с/с

0,2

4

11,220000

0,087000

1042

Бутан-1-ол (Спирт н-бутиловый)

ПДК м/р

0,1

3

0,036921

0,208800

1061

Этанол

ПДК м/р

5

4

0,049228

0,278400

1119

2-Этоксиэтанол (Этилцеллозольв)

ОБУВ

0,7

-

0,019691

0,111360

1210

Бутилацетат

ПДК м/р

0,1

4

0,043548

0,246144

1325

Формальдегид

ПДК м/р

0,035

2

0,002057

0,000278

1401

Пропан-2-он

ПДК м/р

0,35

4

0,071380

0,403392

2704

Бензин (нефтяной, малосернистый)

ПДК м/р

5

4

0,163951

0,561704

2732

Керосин

ОБУВ

1,2

-

0,087367

0,031707

2754

Углеводороды

предельные С12- С19

ПДК м/р

1

4

0,562730

0,008990

2902

Взвешенные вещества

ПДК м/р

0,5

3

0,196049

1,015440

2908

Пыль неорганическая, содержащая 70-20% двуокиси кремния

ПДК м/р

0,3

3

0,000066

0,000059

2930

Пыль абразивная

ОБУВ

0,04

-

0,004200

0,001605

2978

Пыль резинового вулканизата

ОБУВ

0,1

-

0,009040

0,003254

Всего веществ: 28

14,674265

7,849574

в т.ч. твердых: 10

0,272392

1,036393

          жидких/газообразных: 18

14,401872

6,813181

Группы веществ, обладающих эффектом комбинированного вредного действия:

6034

Свинца оксид + серы диоксид

6035

Сероводород + формальдегид

6041

Серы диоксид + кислота серная

6043

Серы диоксид + сероводород

6053

Фтористый водород + плохо растворимые слои фтора

6204

Азота диоксид + серы диоксид

6205

Серы диоксид + фтористый водород

Перечень источников и загрязняющих веществ, не подлежащих государственному учету и нормированию

Согласно результатам расчетов, представленным в таблице 2,

нормированию не подлежит серная кислота (параметр ≤ 0,1; приземная концентрация < 0,05 ПДК). Данные вещества представлены в таблице 6.

Таблица 6 Перечень источников выбросов и загрязняющих веществ, не подлежащих государственному учету и нормированию и разрешенных к выбросу в атмосферный воздух

Номер

источника
выброса

Вредное вещество

Выбросы вредных веществ

Код

Наименование

г/с

т/год

6042

0322

Серная кислота

0,0000048

0,000009

ВСЕГО:

0,0000048

0,000009

в том числе по веществам:

0322

Серная кислота

0,0000048

0,000009

Литература

1. Закон Российской Федерации "Об охране атмосферного воздуха" от 04.05.99 г. №96-ФЗ.

2. Постановление Правительства РФ от 02.03.2000 г. № 183 "О нормативах выбросов вредных (загрязняющих веществ) в атмосферный воздух и вредных физических воздействий на него".

3. Приказ Министерства природных ресурсов и экологии от 31.12.2010 г. № 579 "О порядке установления источников выбросов вредных (загрязняющих) веществ в атмосферный воздух, подлежащих государственному учету и нормированию, и о перечне вредных (загрязняющих) веществ, подлежащих государственному учету и нормированию".

4. ОНД-86 "Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий".

5. СанПиН 2.2.1/2.1.1.1200-03 "Санитарно-защитные зоны и санитарная классификация предприятий, сооружений и иных объектов" от 25 сентября 2007 г. N 74 (в ред. Постановлений Главного государственного санитарного врача РФ от 10.04.2008 N 25, от 06.10.2009 N 61, от 09.09.2010 N 122).

6. СанПиН 2.1.6.1032-01 "Гигиенические требования к обеспечению качества атмосферного воздуха населенных мест".

7. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух" СПб, 2012 г.

8. Перечень и коды веществ, загрязняющих атмосферный воздух. С-Пб. 2010 г.

9. Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выделений)", СПб, 2002 г.

10. Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при сварочных работах (на основе удельных показателей). СПб, 1997.

11. Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (на основе удельных показателей). СПб, 1997.

12. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу автотранспортных предприятий (расчетным методом). М, 1998.

13. Дополнения и изменения к Методике проведения инвентаризации выбросов загрязняющих веществ в атмосферу автотранспортных предприятий (расчетным методом). М, 1999.

14. Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров. М., 1997 г.

15. Методика расчета вредных выбросов в атмосферу из нефтехимического оборудования (РМ 62-91-90)

16. Заиков Г.Е., Маслов С.А., Рубайло В.Л. "Кислотные дожди и окружающая среда". М.: Химия, 1991.

17. Новиков Ю.В. "Экология, окружающая среда и человек". Учеб.пособие для вузов, средних школ и колледжей. М.: ФАИР-ПРЕСС, 2000.

18. Степановских А.С. "Экология". Учебник для вузов. М.: ЮНИТИ-ДАНА, 2003.

19. Владимиров А.М. и др. "Охрана окружающей среды". Санкт-Петербург: Гидрометеоиздат, 1991.

20. Новиков Ю.В. "Охрана окружающей среды".

21. Правила пожарной безопасности В Российской Федерации; Инфра-М, Москва 1994

22. Охрана труда. Практикум. №6/1997.

23. Данилов-Данильян В.И. "Экология, охрана природы и экологическая безопасность" М.: МНЭПУ, 1997 г.

24. Протасов В.Ф. "Экология, здоровье и охрана окружающей среды в России", М.: Финансы и статистика, 1999 г.

25. Белов С.В. "Безопасность жизнедеятельности" М.: Высшая школа, 1999 г.