Теория очередей

Теория очередей.

Статьи по теме
Искать по теме

Сегодня во многих областях практической деятельности человека мы сталкиваемся с необходимостью пребывания в состоянии ожидания. Подобные ситуации возникают в очередях в билетных кассах, в крупных аэропортах, при ожидании обслуживающим персоналом самолетов разрешения на взлет или посадку, на телефонных станциях в ожидании освобождения линии абонента, в ремонтных цехах в ожидании ремонта станков и оборудования, на складах снабженческо-сбытовых организаций в ожидании разгрузки или погрузки транспортных средств. Изучение таких ситуаций относится к задачам теории очередей.

При дальнейшем развитии массового обслуживания применение принципов теории очередей в управлении различного рода организациях является необходимым условием их благополучного функционирования. Если клиенты долго ожидают своей очереди, то они вряд ли будут совершать повторные покупки в универмаге, где им пришлось полчаса ждать, пока их обслужат, так как людям не нравится тратить время на ожидание. Основной целью теории очередей является изучение принципов функционирования системы обслуживания при возникновении очередей и исследование явлений, возникающих в процессе обслуживания.

Время пребывания требования в очереди можно сократить за счет увеличения количества обслуживающих устройств. Однако каждое дополнительное устройство требует определенных материальных затрат, при этом увеличивается время бездействия обслуживающего устройства из-за отсутствия требований на обслуживание, что также является негативным явлением. Следовательно, возникает проблема, каким образом достичь максимального сокращения очереди или потерь требований при минимальных затратах, связанных с простоем обслуживающих устройств.

Понятие теории очередей

Теория очередей в русскоязычной литературе чаще именуется теорией массового обслуживания. Действительно, во многих работах они трактуются как равнозначные, в других – теория очередей рассматривается лишь как раздел теории массового обслуживания, поскольку последней изучаются системы не только с очередями, но и с отказами, например, когда система занята, а очередь требований не образуется, так как им "отказывается" в обслуживании. Термин "массовое" предполагает статистическую устойчивость картины и многократную повторяемость ситуаций в том или ином смысле: много прибывших в систему и обслуженных заявок, большое число находящихся в эксплуатации аналогичных систем.

Теория очередей и теория массового обслуживания используются как равнозначные, так как мы не рассматриваем системы с отказами.

"Теория очередей – раздел прикладной математики, изучающий процессы, связанные с удовлетворением массового спроса на обслуживание, с учетом случайного характера спроса и обслуживания". Сюда относятся системы, предназначенные для обслуживания массового потока требований случайного характера, случайными могут быть как моменты появления требований, так и затраты времени на их обслуживание.

Теория очередей возникла в начале XX в. на базе задач телефонии: требовалось найти способ определения числа телефонных линий, обеспечивающий удовлетворительное обслуживание абонентов. Специфику этой задачи составляет случайный характер моментов, когда абоненты вызывают друг друга, и длительность разговора. Вначале задача решалась эмпирическим путем; затем начала строиться теория, основанная на методах теории вероятностей. Задачи, аналогичные по математической постановке задачам телефонии, возникли при создании предприятий массового обслуживания, аэропортов, дорог автомобильных, при планировании железнодорожных перевозок, запасов продукции и т.п. Во второй половине 60-х гг. теория очередей стала применяться к различным задачам кибернетики: организации взаимодействия вычислительных машин, теории надежности, операций исследованию, радиотехнике, радиолокации и др.

В то же время "теория очередей – раздел исследования операций, который рассматривает разнообразные процессы в экономике, а также в телефонной связи, здравоохранении и других областях, как процессы обслуживания, т.е. удовлетворения каких-то запросов, заказов (напр., обслуживание кораблей в порту – их разгрузка и погрузка, обслуживание токарей в инструментальной кладовой цеха – выдача им резцов, обслуживание клиентов в прачечной – стирка белья и т. д.)".

При всем разнообразии эти процессы имеют общие черты:

- требования на обслуживание нерегулярно (случайно) поступают в канал обслуживания (место у причала, окно в раздаточной);

- в зависимости от занятости канала, продолжительности обслуживания и других факторов образуют очередь требований.

Теория очередей изучает статистические закономерности поступления требований и на этой основе вырабатывает решения, т.е. такие характеристики, при которых затраты времени на ожидание в очереди, с одной стороны, и на простой каналов обслуживания – с другой, были бы наименьшими. Так можно рассматривать сумму потерь времени на ожидание в очередях и на простои каналов обслуживания (хранение товаров на складах) как меру эффективности изучаемой экономической системы: чем меньше потери, тем выше эффективность.

"Теория очередей изучает системы, в которых требования, застающие систему занятой, не теряются, а ожидают её освобождения и затем обслуживаются в том или ином порядке, также возможно предоставление приоритета определённым категориям требований".

Выводы теории очередей используют для рационального планирования систем массового обслуживания. Применение методов теории очередей необходимо даже в простейших случаях для правильного понимания статистических закономерностей, возникающих в системах массового обслуживания.

"Система массового обслуживания – объект (предприятие, организация и др.), деятельность которого связана с многократной реализацией исполнения каких-то однотипных задач и операций".

С точки зрения теории очередей это совокупность пунктов, на которые в случайные или неслучайные моменты времени поступают заявки на обслуживание или требования, подлежащие удовлетворению.

"Система массового обслуживания состоит из обслуживаемой и обслуживающей систем. Обслуживаемая система включает совокупность источников требований и входящего потока требований. Обслуживающая система состоит из накопителя и механизма обслуживания".

Система характеризуется следующими параметрами:

- Требование/заявка – каждый отдельный запрос на выполнение какой-либо работы.

- Входящий поток требований – требования, поступающие от всех источников в обслуживающую систему.

- Время обслуживания – время, в течение которого выполняется заявка.

- Интерактивность обслуживания – количество требований, обслуживаемых одним каналом в единицу времени.

- Блок обслуживания – та часть системы обслуживания, в которую поступает поток требований. Он может состоять из одного или нескольких "приборов", "каналов", под которыми понимаются устройства или люди, осуществляющие обслуживание.

Примеров систем массового обслуживания можно привести очень много. Телефонная сеть: здесь заявка – вызов абонента, обслуживающее устройство – коммутатор. Универсам: заявка в этом случае – приход в магазин покупателя, а обслуживающее устройство – касса.

Можно, правда, рассматривать работу универсама и с противоположных позиций: считать, что кассир, ожидающий покупателя, – это заявка на обслуживание, а обслуживающее устройство – это покупатель, способный удовлетворить заявку, т.е. подойти к кассе с покупками и прекратить вынужденный простой кассира. Возможность такого двойственного подхода является основой для оптимизации структуры исследуемых систем.

Если, например, в магазине работает лишь одна касса, а покупатели заходят часто, то возникнет очередь покупателей, ожидающих обслуживания. Если же, наоборот, покупатели заходят редко, а кассиров несколько, то возникнет очередь кассиров, ожидающих покупателя. В обоих случаях магазин несет потери: в первом случае потому, что не все желающие купить товар будут обслужены, а во втором – потому, что кассиров слишком много и часть фонда их заработной платы будет расходоваться напрасно.

Поэтому, критерием правильности организации работы магазина может служить средняя сумма времени ожидания покупателя и времени ожидания кассира. Работа магазина организована наилучшим образом, если эта величина минимальна.

Задачи теории очередей

"Очередь представляет собой последовательность требований или заявок, которые, заставая систему обслуживания занятой, не выбывают, а ожидают ее освобождения, а затем они обслуживаются в том или ином порядке. Очередью можно назвать также и совокупность ожидающих каналов или средств обслуживания. Это ключевое понятие теории очередей".

Процесс образования очереди носит стохастический характер, так как состоит из случайных переменных, значения которых меняются во времени.

Очереди требований или заявок подразделяются, прежде всего, на замкнутые и линейные.

В первом случае обслуженные требования могут возвращаться в систему и вновь поступать на обслуживание. Например, автомашины, приписанные к определенному парку, могут образовать замкнутую очередь для зарядно-аккумуляторной станции этого парка. Или мастер, задачей которого является наладка станков в цехе, должен периодически их обслуживать. Каждый налаженный станок становится в будущем потенциальным источником требований на еще одну наладку. В подобных системах общее число циркулирующих требований конечно и чаще всего постоянно.

Во втором случае обслуженные требования не возвращаются в систему, например, зарядно-аккумуляторная станция общего пользования на автостраде. Также примерами подобных систем могут служить магазины, кассы вокзалов, портов и др. Для этих систем поступающий поток требований можно считать неограниченным.

Дисциплина обслуживания – совокупность правил, пользуясь которыми, из очереди выбирают требования для обслуживания. По дисциплине обслуживания очереди также подразделяются на ряд видов: живая очередь, очередь с приоритетами, когда отдельным требованиям отдается предпочтение, случайные очереди и т.д.

Также важными параметрами являются длина очереди, т.е. среднее число ожидающих требований, и время ожидания обслуживания – среднее время пребывания требования в системе до момента начала обслуживания.

Задачи теории очередей, сформулированные математически, обычно сводятся к изучению специального типа случайных процессов. Исходя из заданных вероятностных характеристик поступающего потока вызовов и продолжительности обслуживания, теория очередей определяет соответствующие характеристики качества обслуживания: вероятность отказа, среднее время ожидания начала обслуживания, среднее время простоя линий связи и т. д.

Время обслуживания – это время, затрачиваемое системой на обслуживание отдельного требования. Чаще всего длительность обслуживания является случайной величиной и характеризуется максимально возможным временем обслуживания. Это означает, что вероятность того, что время, затраченное на обслуживание требования, не больше чем предельно допустимое время.

Расчет пропускной способности системы подразумевает определение максимального числа требований, которые могут быть обслужены одновременно. Требования обслуживаются с помощью канала обслуживания. Канал обслуживания означает устройство, средство или человека, способное в заданный момент времени обслуживать лишь одно требование. Пропускная способность канала – один из определяющих параметров при решении задач теории очередей. Другой его важнейшей характеристикой является среднее время обслуживания одной заявки.

Доступность системы включает определение всевозможных причин, по которым число требований, удовлетворяемых одновременно, меньше, чем пропускная способность.

Кроме того, вся система может быть время от времени не готова к приему требований, например, обеденный перерыв в магазине, поэтому доступность включает характеристики времени "отключения" системы. Время "отключения" системы чаще всего считают, так же как и длительность обслуживания, случайной величиной и описывают вероятностью того, что канал или вся система отключается на определенное время. Реальные системы часто "неполнодоступны", хотя существуют и "полнодоступные" системы.

Важную роль в выполнении задач теории очередей выполняют модели теории очередей, с помощью которых проектируются модели оптимального обслуживания.

Модель теории очередей или модель оптимального обслуживания используется для определения оптимального числа каналов обслуживания по отношению к потребности в них. К ситуациям, в которых модели теории очередей могут быть полезны, можно отнести звонки людей в авиакомпанию для резервирования места и получения информации, ожидание в очереди на машинную обработку данных, мастеров по ремонту оборудования, очередь грузовиков под разгрузку на склад, ожидание клиентами банка свободного кассира. Если, например, клиентам приходится слишком долго ждать кассира, они могут решить перенести свои счета в другой банк. Подобным образом, если грузовикам приходится слишком долго дожидаться разгрузки, они не смогут выполнить столько поездок за день, сколько положено. Таким образом, одна принципиальная проблема заключается в уравновешивании расходов на дополнительные каналы обслуживания: больше людей для разгрузки грузовиков, больше кассиров, больше клерков, занимающихся предварительной продажей билетов на самолеты. Вторая принципиальная проблема заключается в поддержании потерь от обслуживания на уровне ниже оптимального: грузовики не могут сделать лишнюю остановку из-за задержек под разгрузкой, потребители уходят в другой банк или обращаются к другой авиакомпании из-за медленного обслуживания.

"Основная причина недостатка в каналах обслуживания заключается в краткосрочных изменениях частоты обращения потребителей за обслуживанием, а также времени обслуживания. Это ведет к избыточной пропускной способности в определенные моменты времени и появлению очередей в другие, хотя пропускная способность могла бы быть достаточной, если бы осуществлялся полный контроль за поступлением требований и можно было бы построить соответствующий график".

Модели очередей снабжают руководство инструментом определения оптимального числа каналов обслуживания, которые необходимо иметь, чтобы сбалансировать издержки в случаях чрезмерно малого и чрезмерно большого их количества.

Рассмотрим общую постановку задачи теории очередей в массовом обслуживании.

Имеется некоторая система, предназначенная для обслуживания поступающих в нее заявок или требований. Система располагает определенным количеством рабочих мест или средств обслуживания (каналы обслуживания). Поступление требований в систему и время их обслуживания носят случайный характер. При этом в системе возникают ситуации, когда:

1) либо образуется очередь требований в ожидании обслуживания;

2) либо простаивают каналы обслуживания.

И то и другое приводит к увеличению издержек обслуживания.

Чтобы не допустить неоправданного увеличения издержек, можно:

1) изменить среднее количество требований, поступающих в систему в единицу времени;

2) изменить количество каналов обслуживания;

3) изменить оба параметра.

Задачи теории очередей рассматриваются для действующих и проектируемых систем.

Для действующих систем дают количественную оценку функционирования системы и ее отдельных элементов, на основании которой принимают решения, направленные на совершенствование работы системы и улучшение ее организации.

Для проектируемых систем определяют ее оптимальные качественные и количественные характеристики:

1. Оптимальное количество каналов обслуживания.

2. Вероятность возникновения нежелательных ситуаций (простой каналов обслуживания, простой требований в очереди).

Таким образом, в любом из двух случаев модель задачи массового обслуживания включает в себя:

- поток заявок;

- каналы обслуживания;

- организацию очереди и дисциплину обслуживания;

- показатели эффективности.

Рассмотрим данные элементы задачи теории очередей.

Входящий поток требований представляет собой последовательность требований, поступающих в канал обслуживания. Требования возникают случайно и требуют определенного, обычно заранее точно не предсказуемого времени для их удовлетворения.

В большинстве случаев входящий поток неуправляем и зависит от ряда случайных факторов. Число требований, поступающих в единицу времени, случайная величина. Случайной величиной является также интервал времени между соседними поступающими требованиями. Однако среднее количество требований, поступивших в единицу времени, и средний интервал времени между соседними поступающими требованиями предполагаются заданными.

Поток заявок однороден, если все заявки равноправны и рассматриваются только моменты времени поступления заявок, т.е. факты заявок без уточнения деталей каждой конкретной заявки.

В простейшем случае вероятность появления требования в любой малый промежуток времени пропорциональна длине этого промежутка и не зависит от того, возникали или нет требования в предшествующие промежутки времени.

Простейший поток важен по следующим причинам:

1. Сумма конечного числа независимых простейших потоков образует простейший поток с интенсивностью, равной сумме интенсивностей составляющих.

2. Сумма независимых стационарных потоков с ограниченным последействием при условии малой интенсивности составляющих в сравнении с суммарной интенсивностью при условии, что сумма потоков стремится к бесконечности, сходится к простейшему потоку.

3. Случайное прореживание произвольного стационарного ординарного потока с ограниченным последействием, т.е. выбрасывание каждого очередного требования независимо с некоторой вероятностью, при увеличении вероятности выбрасывания приближает поток к простейшему.

4. Вероятность наступления события простейшего (и только простейшего) потока на малом интервале времени пропорциональна продолжительности этого интервала и не зависит от его времени наступления интервала и его окончания, что дает колоссальные расчетные преимущества.

С его помощью возможно спроектировать модели, описывающие положение системы без учета других факторов.

Указанные свойства наблюдаются часто, но не всегда. Например, интенсивность потока заявок может зависеть от времени суток или года, заявки могут поступать группами постоянного или случайного объема. В случае неординарного потока требований в виде "пачек" постоянного объема удобнее переходить к ординарному потоку групповых заявок.

На практике условия простейшего потока не всегда строго выполняются. Часто имеет место нестационарность процесса: в различные часы дня и различные дни месяца поток требований может меняться, он может быть интенсивнее утром или в последние дни месяца. Существует также наличие последействия, когда количество требований на отпуск товаров в конце месяца зависит от их удовлетворения в начале месяца. Наблюдается и явление неоднородности, когда несколько клиентов одновременно пребывают на склад за материалами.

Входящий поток требований называется стационарным, если вероятность поступления определенного числа требований за какой-то промежуток времени определяется только величиной этого промежутка и не зависит от момента его начала. Если требования могут поступать в систему только по одному, то такой поток называется ординарным. Если числа поступающих за разные промежутки времени заявок взаимно независимы – это поток без последействия.

Если требования поступают в определенные моменты времени, то говорят о дискретном входящем потоке. Системы с такими потоками наиболее распространены. К их числу относятся, например, телефонная сеть, универсам. Встречаются и системы с непрерывным входящим потоком. Примером может служить газгольдер, в который непрерывно поступает газ, причем снятие с хранения, так как в данном случае именно это и является обслуживанием, может осуществляться как дискретно, ведь газ может требоваться отдельными порциями, так и непрерывно.

Если в систему может поступить одновременно только конечное число требований, входящий поток называется ограниченным; в противоположном случае – неограниченным. Например, если ремонтная бригада обслуживает участок из 30 станков, то число требований – отказов станков – не может быть одновременно более 30, а в задаче о нагрузке телефонной сети входящий поток обычно можно считать неограниченным.

Системы обслуживания по числу установленных устройств делятся на одно- и многоканальные. Количество требований, одновременно могущих находиться на обслуживании, не превышает числа каналов. В многоканальной системе массового обслуживания поступившее требование может быть обслужено одним из нескольких каналов, входящих в блок обслуживания. Каналы могут быть однородными, специализированными по типам заявок, различающимися интенсивностью обслуживания и т.п.

Заявки, пришедшие в занятую систему, не могут быть обслужены немедленно и образуют очередь. Очередь может быть ограничена максимальной длиной или максимальным временем пребывания в ней. Примером задачи с временным ограничением является прибытие на стройку самосвала с бетонной смесью. При нарушении ограничения заявка получает отказ. Введение ограничения автоматически исключает очень большие задержки, но связано с дополнительными "штрафами" за отказ в обслуживании.

Вновь прибывшая заявка в зависимости от организации и назначения системы становится либо в конец очереди (дисциплина FCFS: First Come – First Served), либо в ее начало (LCFS: Last Come – First Served). Последний вариант иначе называется стековым ("магазинным") принципом.

При неоднородных заявках может вводиться приоритетное обслуживание. В этом случае заявки выстраиваются в несколько очередей, и в освободившийся канал поступает заявка из непустой очереди с наивысшим приоритетом. В некоторых ситуациях (абсолютный приоритет)

Наиболее важными показателями эффективности системы являются:

1. вероятность отказа в приеме заявки на обслуживание;

2. вероятность нулевого ожидания, т.е. вероятность того, что требование будет обслужено сразу после поступления в систему;

3. время пребывания заявки в системе;

4. время ожидания начала обслуживания;

5. длина очереди;

6. распределение и моменты длительности непрерывной занятости системы.

Также системы оценивают по характеристикам распределения времени пребывания. Характеристики ожидания и, в частности, его средняя длительность отражают цену, которую клиент должен заплатить за совместное с другими клиентами использование обслуживающей системы.

Использование теории очередей при создании систем массового обслуживания в коммерческой деятельности

Природа массового обслуживания, особенно в такой сфере, какой является коммерческая деятельность, весьма тонка и сложна. Коммерческая деятельность связана с выполнением множества операций на этапах движения товарной массы из сферы производства в сферу потребления. Такими операциями являются погрузка товаров, перевозка, разгрузка, хранение, обработка, фасовка, реализация. Кроме этих операций процесс движения товаров сопровождается большим количеством предварительных, подготовительных, сопутствующих, параллельных и последующих операций с платежными документами, тарой, деньгами, автомашинами, клиентами и т.п.

Для перечисленных фрагментов коммерческой деятельности характерны массовость поступления товаров, денег, посетителей в случайные моменты времени, затем их последовательное обслуживание (удовлетворение требований, запросов, заявок) путем выполнения соответствующих операций, время выполнения которых носит также случайный характер. Все это создает неравномерность в работе, порождает недогрузки, простой и перегрузки в коммерческих операциях. Много неприятностей доставляют очереди, например, посетителей в кафе, столовых, ресторанах, водителей автомобилей на товарных базах, ожидающих разгрузки, погрузки или оформления документов. В связи с этим возникают задачи анализа существующих вариантов выполнения всей совокупности операций, например, торгового зала супермаркета, ресторана или в цехах производства собственной продукции для целей оценки их работы, выявления слабых звеньев и резервов для разработки в конечном итоге рекомендаций, направленных на увеличение эффективности коммерческой деятельности.

Кроме того, возникают другие задачи, связанные с созданием, организацией и планированием нового экономичного, рационального варианта выполнения множества операций в пределах торгового зала, кондитерского цеха, всего производства ресторана, кафе, столовой, планового отдела, бухгалтерии, отдела кадров и др.

Роль заявок в коммерческой деятельности выполняют товары, посетители, деньги, ревизоры, документы, а роль каналов обслуживания – продавцы, администраторы, повара, кондитеры, официанты, кассиры, товароведы, грузчики, торговое оборудование и др. Важно заметить, что в одном варианте, например, повар в процессе приготовления блюд является каналом обслуживания, а в другом – выступает в роли заявки на обслуживание, например, к заведующему производством за получением товара.

Заявки в силу массовости поступления на обслуживание образуют потоки, которые до выполнения операций обслуживания называются входящими, а после возможного ожидания начала обслуживания, т.е. простоя в очереди, образуют потоки обслуживания в каналах, а затем формируется выходящий поток заявок. В целом совокупность элементов входящего потока заявок, очереди, каналов обслуживания и выходящего потока заявок образует простейшую одноканальную систему массового обслуживания – СМО, структурная модель которой представлена на рис. 1.

Под системой понимается совокупность взаимосвязанных и целенаправленно взаимодействующих частей (элементов). Примерами таких простейших СМО в коммерческой деятельности являются места приема и обработки товаров, узлы расчета с покупателями в магазинах, кафе, столовых, рабочие места экономиста, бухгалтера, коммерсанта, повара на раздаче и т.д.

Теория очередей

Рисунок 1. Структурная модель одноканальной системы массового обслуживания

Процедура обслуживания считается завершенной, когда заявка на обслуживание покидает систему. Продолжительность интервала времени, требуемого для реализации процедуры обслуживания, зависит в основном от характера запроса заявки на обслуживание, от состояния самой обслуживающей системы и канала обслуживания.

Действительно, продолжительность пребывания покупателя в супермаркете зависит, с одной стороны, от личностных качеств покупателя, его запросов, от ассортимента товаров, который он собирается приобрести, а с другой – от формы организации обслуживания и обслуживающего персонала, что может значительно сократить пребывание покупателя в супермаркете и повысить интенсивность обслуживания. Например, овладение кассирами-контролерами работы "слепым" методом на кассовом аппарате позволило увеличить пропускную способность узлов расчета в 1,3 раза и сэкономить время, затрачиваемое на расчеты с покупателями по каждой кассе, более чем на 1,5 ч в день. Внедрение единого узла расчета в универмаге дает следующие ощутимые преимущества покупателю. Так, если при традиционной форме расчетов время обслуживания одного покупателя составляло в среднем 1,5 мин, то при введении единого узла расчета – 67 с. Из них 44 с уходят на оформление покупки в секции и 23 с непосредственно на расчеты за покупки при выходе из магазина. Если покупатель делает несколько покупок в разных секциях, то потери времени сокращаются при приобретении двух покупок в 1,4 раза, трех – в 1,9, пяти – в 2,9 раза.

Задачи организации массового обслуживания возникают практически во всех сферах коммерческой деятельности, например, обслуживание продавцами покупателей в магазинах, обслуживание посетителей на предприятиях общественного питания, обслуживание клиентов на предприятиях бытового обслуживания, обеспечение телефонных разговоров на телефонной станции, оказание медицинской помощи больным в поликлинике и т.д. Во всех приведенных примерах возникает необходимость в удовлетворении некоторой потребности большого числа потребителей.

Любой запрос на удовлетворение какой-либо потребности является заявкой или требованием. Например, заявками, нуждающимися в обслуживании, являются покупатели в магазинах, заявки на телефонные разговоры, заявки на получение товара и т.д.

Под обслуживанием заявок понимается удовлетворение потребности. Обслуживание в приведенных примерах имеет различный характер по своей природе. Однако во всех примерах поступившие заявки нуждаются в обслуживании со стороны какого-либо устройства. В некоторых случаях обслуживание производится одним человеком (обслуживание покупателя одним продавцом в одной секции магазина), в некоторых – группой людей (обслуживание больного врачебной комиссией в поликлинике), а в некоторых случаях – техническими устройствами (продажа газированной воды, бутербродов автоматами). Совокупность средств, которые осуществляют обслуживание заявок, называется каналом обслуживания.

Если каналы обслуживания способны удовлетворить одинаковые заявки, то каналы обслуживания называются однородными. Совокупность однородных каналов обслуживания называется обслуживающей системой.

В систему массового обслуживания поступает большое количество заявок в случайные моменты времени, длительность обслуживания которых также является случайной величиной. Последовательное поступление заявок в систему обслуживания называется входящим потоком заявок, а последовательность заявок, покидающих систему обслуживания, – выходящим потоком.

Случайный характер распределения длительности выполнения операций обслуживания наряду со случайным характером поступления требований на обслуживание приводит к тому, что в каналах обслуживания протекает случайный процесс, который может быть назван (по аналогии с входным потоком заявок) потоком обслуживания заявок или просто потоком обслуживания.

Заявки, поступающие в систему обслуживания, могут покинуть ее и будучи необслуженными. Например, если покупатель не найдет в магазине нужный товар, то он покидает магазин, будучи необслуженным. Покупатель может покинуть магазин также, если нужный товар имеется, но большая очередь, а покупатель не располагает временем.

Теория массового обслуживания занимается изучением процессов, связанных с массовым обслуживанием, разработкой методов решения типичных задач массового обслуживания.

При исследовании эффективности работы системы обслуживания важную роль играют различные способы расположения в системе каналов обслуживания.

При параллельном расположении каналов обслуживания требование может быть обслужено любым свободным каналом. Примером такой системы обслуживания является расчетный узел в магазинах самообслуживания, где число каналов обслуживания совпадает с числом кассиров-контролеров.

На практике часто обслуживание одной заявки осуществляется последовательно несколькими каналами обслуживания. При этом очередной канал обслуживания начинает работу по обслуживанию заявки после того, как предыдущий канал закончил свою работу. В таких системах процесс обслуживания носит многофазовый характер, обслуживание заявки одним каналом называется фазой обслуживания. Например, если в магазине самообслуживания имеются отделы с продавцами, то покупатели сначала обслуживаются продавцами, а потом уже кассирами-контролерами.

Организация системы обслуживания зависит от воли человека. Под качеством функционирования системы в теории массового обслуживания понимают не то, насколько хорошо выполнено обслуживание, а то, насколько полно загружена система обслуживания, не простаивают ли каналы обслуживания, не образуется ли очередь.

В коммерческой деятельности заявки, поступающие в систему массового обслуживания, выступают с высокими претензиями еще и на качество обслуживания в целом, которое включает не только перечень характеристик, исторически сложившихся и рассматриваемых непосредственно в теории массового обслуживания, но и дополнительные характерные для специфики коммерческой деятельности, в частности отдельных процедур обслуживания, требования к их уровню которые к настоящему времени сильно возросли. В связи с этим необходимо учитывать еще и показатели коммерческой деятельности.

Работу системы обслуживания характеризуют такие показатели, как время ожидания начала обслуживания, длина очереди, возможность получения отказа в обслуживании, возможность простоя каналов обслуживания, стоимость обслуживания и в конечном итоге удовлетворение качеством обслуживания, которое еще включает показатели коммерческой деятельности. Чтобы улучшить качество функционирования системы обслуживания, необходимо определить, каким образом распределить поступающие заявки между каналами обслуживания, какое количество каналов обслуживания необходимо иметь, как расположить или сгруппировать каналы обслуживания или обслуживающие аппараты для обслуживания и улучшения показателей коммерческой деятельности.

Использование теории очередей в системе дистанционного образования при расчете оптимальной пропускной способности системы

В вопросах ценообразования в сфере дистанционного образования (ДО) вполне очевидной выглядит необходимость расчета оптимальной пропускной способности самой системы ДО, обусловленной технологическими ограничениями системы, как то суммой ставок профессорско-преподавательского состава (ППС) для каждого курса отдельной специальности, учебным планом и т.п., т.е. в самом общем случае трудоемкостью учебного процесса. Отталкиваясь от оптимальной пропускной способности можно рассчитать нижний предел себестоимости услуг ДО, что в дальнейшем окажется необходимым для сравнительного анализа цены в сопоставлении с потребительской и конкурентной ценами.

Сначала коротко рассмотрим самый очевидный метод расчета предельно допустимого количества ст. в системе (как параметра пропускной способности системы), основанный на простом арифметическом выражении, учитывающем производственные возможности научно-педагогического потенциала вуза.

Технологические возможности процесса оказания услуг ДО ограничиваются трудоемкостью учебно-методического сопровождения. Последняя инициатива Минобразования РФ, касающаяся установления нормативов численности студентов в расчете на единицу ППС, относится к формированию в 1999 г. рабочей группы (Приказ от 14.05.99 N 1302), по результатам деятельности которой подготовлен отчет, не нашедший, однако, практической реализации. Тем не менее, данные исследования позволяют рассматривать следующие соотношения численности студентов для вузов:

- студенты очной формы – 1:10

- студенты очно-заочной формы – 1:18,75

- студенты заочной формы – 1:43,75

- студенты-иностранцы – 1:7,50

- аспиранты очной формы – 1:7,50

- аспиранты заочной формы – 1:10

- слушатели ФПК и ИППК – 1:7,50

- слушатели подготовительных отделений – 1:10

- ординаторы – 1:3,75

- интерны – 1:5.

Для целей нашей работы остановимся, например, на соотношении, предложенном для студентов заочной формы обучения, т.е. 43,75 студента на единицу ППС.

Следовательно, взяв за основу текущую обеспеченность трудовыми ресурсами учебного процесса дистанционного образования, и опираясь на предложенные нормативы, исходя из данных учебного плана для курса специальности (i), рассчитываем среднюю нагрузку на единицу ППС (для заочной формы обучения):

Q_i = численность_i ППС \xx 43,75\xx ((ЧаГ – ЧаСР)/ЧаКП, согл.учебному плану_i) (1)

где:

ЧаГ – число академических часов в году (исследуемом периоде),

ЧаСР – число академических часов, предусмотренных для самостоятельной работы студента, согласно учебного плана,

ЧаКП – число академических часов, предусмотренных для консультаций с преподавателями, согласно учебного плана.

В расчетах принимает участие численность ППС с полной рабочей ставкой, иначе говоря сумма ставок ППС по данной специальности, т.е. она необязательно выступает целым числом. Отметим, что необходимо соблюдать единообразие в формулировках относительно академических и рабочих часов. В числителе введено выражение для расчета суммы академических часов для периода, в течение которого студент может обратиться за консультацией к преподавателю. Поясним его.

Ключевым нормативным ведомственным актом, направленным на правовое регулирование дистанционного образования, является Приказ Минобразования РФ от 18 декабря 2002 г. № 4452 "Об утверждении Методики применения дистанционных образовательных технологий (дистанционного обучения) в образовательных учреждениях высшего, среднего и дополнительного профессионального образования Российской Федерации". Он прямо указывает на обязанность образовательного учреждения обеспечивать каждому обучающемуся возможность доступа к средствам дистанционного обучения и основному информационному ресурсу в объеме часов учебного плана, необходимых для освоения соответствующей образовательной программы или ее части, независимо от формы обучения (очная, вечерняя, заочная) (п.11). Из этого выражения (1) перейдем к следующему равенству:

Q_i/(Ч_а Г – Ч_а СР) = (численность_i ППС \xx 43,75)/ЧаКП, согл.учебному плану_i (2)

Отношение в левой части равенства является, фактически, средней интенсивностью потока заявок в системе массового обслуживания, в дальнейшем станем обозначать его через λ. Отношение в правой части равенства представляет собой интенсивность обслуживания, в дальнейшем обозначаемую через μ. При выполнении условия:

((\r = \l /\m ) ) <= 1 (3), где

ρ – т.н. коэффициент загрузки системы, система работает в стационарном режиме. В стационарном режиме среднее число заявок в СМО постоянно, поэтому среднее число заявок, приходящих в СМО в единицу времени, равно среднему числу заявок, в единицу времени, уходящих из СМО. Следовательно, в стационарном режиме интенсивность потока уходящих заявок равна λ. Коэффициент загрузки ρ в стационарном режиме есть:

а) среднее значение той части единицы времени, в течение которой канал занят;

б) вероятность того, что канал занят;

в) среднее число заявок в канале.

Именно с этого момента мы начинаем говорить о механизме ДО, как о системе массового обслуживания и вносим при этом некоторые специфические поправки в выражения.

Рассматриваемая система относится к виду многоканальных (по числу дисциплин) СМО с очередью (ожиданием). В принятой системе обозначений она выглядит как M|M|n, т.е. система с n каналов обслуживания (количества дисциплин согласно учебного плана), в которой закон распределения вероятностей для входящего потока заявок и обслуживания является экспоненциальным.

Поскольку мы рассматриваем в качестве каналов обслуживания не штатную единицу ППС, а именно дисциплину, то логично будет записать следующее выражение для λ:

\l = n\xx (Q_i/(ЧаГ – ЧаСР)) (4), где

n – число дисциплин, согласно учебного плана. Т.е. в нашем случае мы рассматриваем каждого студента как источник n заявок, которые могут занимать систему. Это имеет смысл, поскольку, в частности, мы принимаем значение μ за среднее и рассматриваем пропускную способность канала относительно единовременного запроса студента, а не совокупности таких запросов, что было бы некорректно.

Для многоканальной СМО \r = \l \xx Т_обсл/n (5), где

Тобсл есть среднее время обслуживания канала, или. Его значение также должно удовлетворять выражению стационарности (3).

Далее, теория массового обслуживания предлагает следующее выражение для расчета средней длины очереди в многоканальной СМО:

L = \b_0 \xx ((\l Т_обсл)^(n+1)/(n!n(1-\l Т_обсл/n)^2)) (6), где

где β0 – стационарная вероятность того, что в СМО нет заявок. Эта вероятность определяется в виде:

\b_0 = 1/((\l Т_обсл)^n/n!(1-\l Т_обсл/n)+sum(m=0,n-1, (\l Т_обсл)^m/m!) ) (7)

Варьируя численность студентов в системе, мы получаем закон распределения длины очереди, представленный, например, на рисунке 2.

Рисунок 2. Зависимость средней длины очереди L в системе дистанционного образования от количества студентов Qi.

Следует обратить внимание, что предельное значение Qi отнюдь не выражает оптимального состояния системы с т.з. удовлетворения качественных потребностей потребителя услуг. Действительно, мы замечаем, что длина очереди, и, следовательно, время ожидания заявки в системе заметно прогрессирует при, достигая недопустимых значений. Однако появляется возможность выбора того оптимального значения Qi, при котором потребитель будет удовлетворен режимом обслуживания. С точки зрения маркетинга ДО, этот показатель будет важен не только при калькуляции себестоимости и последующего ценообразования, но и при анализе технологических возможностей конкурентов.

Использование методов теории очередей в маркетинговых исследованиях в области дистанционного образовании выглядит достаточно целесообразным.

Литература

1. Гмурман В.Е. Теория вероятностей и математическая статистика. – М: Высшая школа, 2003.

2. Грачева М.В. Моделирование экономических процессов. – М.: Юнити-Дана, 2005 г.

3. Касамин Н.С. Элементы теории и практики управления очередями в организациях. – Ростов-на-Дону: Феникс, 2003.

4. Косоруков О.А. Исследование операций. – М.: Экзамен, 2005.

5. Орлова И.В. Экономико-математическое моделирование. – М.: Высшая школа, 2004.

6. Рыжиков Ю.И. Теория очередей и управление запасами. – СПб: Питер, 2004.

7. Соломенцев Ю.М.Технологические основы гибких производственных систем. – М.: Вузовский учебник, 2007 г.

8. Уткин В.Б., Балдин К.В. Информационные системы и технологии в экономике. – М.: Юнити, 2005.

9. Фомин Г.П., Математические методы и модели в коммерческой деятельности. – М: Финансы и статистика, 2004.

10. Хемди А. Введение в исследование операций. – М.: Вильямс, 2004.

11. Шапкин, А.С. Мазаева Н.П. Математические методы и модели исследования операций. – М.: Дашков и К, 2004.

12. Шелобаев С.И. Математические методы и модели в экономике, финансах, бизнесе: Учеб. пособие для вузов. – М.: ЮНИТИ-ДАНА, 2001.