Теория массового обслуживания

Теория массового обслуживания.

Статьи по теме
Искать по теме

На промышленных предприятиях теория игр может использоваться для выбора оптимальных решений, например при создании рациональных запасов сырья, материалов, полуфабрикатов, в вопросах качества продукции и других экономических ситуациях. В первом случае противоборствуют две тенденции: увеличения запасов, в том числе и страховых, гарантирующих бесперебойную работу производства; сокращения запасов, обеспечивающих минимизацию затрат на их хранение; во втором - стремления к выпуску большего количества продукции, ведущего к снижению трудовых затрат; к повышению качества, сопровождающемуся часто уменьшением количества изделий и, следовательно, возрастанием трудовых затрат. В машиностроительном производстве противоборствующими направлениями являются стремление к максимальной экономии металла в конструкциях, с одной стороны, и обеспечение необходимой прочности конструкций - с другой.

В сельском хозяйстве теория игр может применяться при решении экономических задач, в которых оппозиционной силой выступает природа, и когда вероятность наступления тех или иных событий многовариантна или неизвестна.

Природные условия нередко сказываются и на эффективности работы промышленных предприятий.

Математическая теория массового обслуживания

Теория массового обслуживания является очень актуальной в наше время. От её совершенствования порой зависят очень важные компоненты современной жизни. Из сказанного выше мы видим, что СМО применяются во многих областях деятельности человека, которые связаны с удовлетворением потребностей заявителей на обслуживание.

Одним из самых главных мест применения СМО является экономика. Ведь где, как не в экономике больше всего сталкиваются с удовлетворением потребностей. Когда запросов на удовлетворение потребностей много, а средств удовлетворения меньше, чем запросов. Очень важным является правильно рассчитать систему обслуживания запросов, ведь если запросы будут потеряны из-за того, что их вовремя не обслужили – фирма (предприятие, банк и т.д.) потеряет значительную часть прибыли. Для оптимизации системы обслуживания и используется СМО. Её разработкой для конкретных условий занимаются менеджеры.

Теория массового обслуживания – это очень многогранное понятие. А, так как человеку свойственно все систематизировать для облегчения понимания, теория массового обслуживания стала базироваться на математическом аппарате. Математическое моделирование СМО является наиболее прогрессивным и точным.

Теория массового обслуживания впервые применялась в телефонии, а затем и в других областях хозяйственной деятельности.

Например, организация нормального процесса обслуживания покупателей связана с правильным определением следующих показателей: количества предприятий данного торгового профиля, численности продавцов в них (в том числе и "механических"), наличия соответствующих основных фондов, частоты завоза товаров, численности обслуживаемого населения, плотности обращаемости и потребности в соответствующих товарах (по групповому и внутригрупповому ассортименту). Если предположить, что предприятие располагает необходимыми основными фондами, торгует товарами, имеющимися в достаточном количестве (при нормальной частоте завоза), то и тогда в процессе обслуживания остаются такие переменные величины, которые могут существенно повлиять на качество обслуживания. Надлежит, следовательно, выбрать такой оптимальный вариант организации торгового обслуживания населения, при котором время обслуживания будет минимальным, качество - высоким, не будет излишних народнохозяйственных затрат. Математический аппарат теории массового обслуживания облегчает решение этой задачи.

Аналитическое моделирование на основе теории систем массового обслуживания.

При аналитическом моделировании исследование процессов или объектов заменяется построением их математических моделей и исследованием этих моделей. В основу метода положены идентичность формы уравнений и однозначность соотношений между переменными в уравнениях, описывающих оригинал и модель. Поскольку события, происходящие в локальных вычислительных сетях, носят случайный характер, то для их изучения наиболее подходящими являются вероятностные математические модели теории массового обслуживания. Объектами исследования в теории массового обслуживания являются системы массового обслуживания (СМО) и сети массового обслуживания (Семо). Системы массового обслуживания классифицируются по следующим признакам:

- закону распределения входного потока заявок;

- числу обслуживающих приборов;

- закону распределения времени обслуживания в обслуживающих приборах;

- числу мест в очереди;

- дисциплине обслуживания.

СМО классифицируются на разные группы в зависимости от состава, от времени пребывания в очереди до начала обслуживания, от дисциплины обслуживания требований.

По составу СМО бывают одноканальные (с одним обслуживающим устройством) и многоканальными (с большим числом обслуживающих устройств). Многоканальные системы могут состоять из обслуживающих устройств как одинаковой, так и разной производительности.

По времени пребывания требований в очереди до начала обслуживания системы делятся на три группы:

1) с неограниченным временем ожидания (с ожиданием),

2) с отказами;

3) смешанного типа.

В СМО с неограниченным временем ожидания очередное требование, застав все устройства занятыми, становится в очередь и ожидает обслуживания до тех пор, пока одно из устройств не освободится.

В системах с отказами поступившее требование, застав все устройства занятыми, покидает систему. Классическим примером системы с отказами может служить работа автоматической телефонной станции.

В системах смешанного типа поступившее требование, застав все (устройства занятыми, становятся в очередь и ожидают обслуживания в течение ограниченного времени. Не дождавшись обслуживания в установленное время, требование покидает систему.

В системах с определенной дисциплиной обслуживания поступившее требование, застав все устройства занятыми, в зависимости от своего приоритета, либо обслуживается вне очереди, либо становится в очередь.

Основными элементами СМО являются: входящий поток требований, очередь требований, обслуживающие устройства (каналы) и выходящий поток требований.

Схематическое изображение разных СМО

Схематическое изображение разных СМО

Схематическое изображение разных СМО

Таким образом, из вышеописанного можно сделать вывод о том, что теория массового обслуживания просто необходима в нашей жизни. Так как мы ежедневно имеем дело с очередями, то эта теория позволяет решать многие жизненные ситуации.

С точки зрения тех, кого обслуживают, очередь связана с бесполезной потерей времени и всегда ассоциируется только с отрицательным восприятием. Одной из важнейших экономических характеристик СМО является время, теряемое заявкой в очереди на ожидание обслуживания. Большое количество заявок, ожидающих обслуживания, кроме отрицательного влияния на субъективное восприятие, мешает нормальной работе даже при небольших временных затратах. Хорошо организованное обслуживание соответствует реально незначительному времени нахождения заявки в очереди. В условиях рыночной экономики и при наличии конкуренции низкий уровень обслуживания приводит к потере потенциальных заявок и снижению конкурентоспособности. Поэтому для менеджера важным является контролировать процессы образования очереди. Пренебрежение этой стороной менеджмента может привести к серьезным экономическим потерям, вплоть до вытеснения из рынка. Теория массового обслуживания дает методы анализа характеристик очереди и выявления путей ее уменьшения.